INFO: Trad Archery for Bowhunters



Author Topic: steel question  (Read 1084 times)

Offline brmize

  • Trad Bowhunter
  • **
  • Posts: 168
steel question
« on: November 14, 2008, 03:26:00 PM »
Hey guys. I know 0 aout knife making but I am curious. I have a bunch of what we call hook knives at work, we use them to trim excess rubber from the beads of cured tires. They are flat steel about 6" long and about 0.5" wide. They have hook at one end with a bevel ground on the inside of the hook. we fit the other end into a handle with a set screw and use them like that. We sharpen the hook with a bench grinder and then a rat-tail file. They are made by Hyde. Now eventually the repeated filling wears through the hook and it breaks so we just throw them away and start over with a new one. I got to thinking about what I might be able to do with them and started bringing them home now I have about 50 of them and am curious if they might be good for anything. Sorry for the windy description but I thought the more details the better.

Thanks,
Brian
"After we've lost a natural place, it's gone for eveyone-hikers, campers, boaters, bicyclists, animal watchers, fishers, hunters, and wildlife-a complete and absolutely democratic tragedy of emptiness."  Richard Nelson

Offline theunluckyhunter

  • Trad Bowhunter
  • **
  • Posts: 365
Re: steel question
« Reply #1 on: November 14, 2008, 06:36:00 PM »
if they were a knife at one point they can be a knife again!

can we see a pic of what you are talking about?
anything can happen on a texas friday night, if you dont mind your manners you dont mind a fight

Offline brmize

  • Trad Bowhunter
  • **
  • Posts: 168
Re: steel question
« Reply #2 on: November 14, 2008, 08:13:00 PM »
this is the best I can do. Hope it works.

 http://www.hydetools.com/data/item_view.asp?ID=824

Brian
"After we've lost a natural place, it's gone for eveyone-hikers, campers, boaters, bicyclists, animal watchers, fishers, hunters, and wildlife-a complete and absolutely democratic tragedy of emptiness."  Richard Nelson

Offline theunluckyhunter

  • Trad Bowhunter
  • **
  • Posts: 365
Re: steel question
« Reply #3 on: November 15, 2008, 11:32:00 AM »
lin, you want to jump in and tell us what chrome vanadium is? some kind of alloy?
anything can happen on a texas friday night, if you dont mind your manners you dont mind a fight

Offline Jeremy

  • Trad Bowhunter
  • **
  • Posts: 3242
Re: steel question
« Reply #4 on: November 15, 2008, 01:02:00 PM »
It's steel wih vanadium and chromium added   :)  

Here's some basic info on alloying elements in steel (from Terry Primos):

The Basics
Steel is a combination of iron and carbon. In its softened state, the base is a matrix composed of simple iron molecules (ferrite), in which are suspended molecules of iron carbide (cementite). When steel is heated to prescribed temperatures, then cooled at a specific rate, it undergoes physical internal changes which manifest themselves in the form of various micro-structures such as pearlite, bainite, and martensite. These micro-structures (and others) provide a wide range of mechanical properties, making steel an extremely versatile metal.
Alloying elements are added to effect changes in the properties of steels. The basis of this article is to cover some of the different alloying elements added to the basic system of iron and carbon, and what they do to change the properties or effectiveness of steel.

Carbon
The presence of carbon in iron is necessary to make steel. Carbon is essential to the formation of cementite (as well as other carbides), and to the formation of pearlite, spheroidite, bainite, and iron-carbon martensite, with martensite being the hardest of the micro-structures, and the structure sought after by knifemakers. The hardness of steel (or more accurately, the hardenability) is increased by the addition of more carbon, up to about 0.65 percent. Wear resistance can be increased in amounts up to about 1.5 percent. Beyond this amount, increases of carbon reduce toughness and increase brittleness. The steels of interest to knifemakers generally contain between 0.5 and 1.5 percent carbon. They are described as follows:

Low Carbon: Under 0.4 percent
Medium Carbon: 0.4 - 0.6 percent
High Carbon: 0.7 - 1.5 percent
Carbon is the single most important alloying element in steel.

Manganese
Manganese slightly increases the strength of ferrite, and also increases the hardness penetration of steel in the quench by decreasing the critical quenching speed. This also makes the steel more stable in the quench. Steels with manganese can be quenched in oil rather than water, and therefore are less susceptible to cracking because of a reduction in the shock of quenching. Manganese is present in most commercially made steels.

Chromium
As with manganese, chromium has a tendency to increase hardness penetration. This element has many interesting effects on steel. When 5 percent chromium or more is used in conjunction with manganese, the critical quenching speed is reduced to the point that the steel becomes air hardening. Chromium can also increase the toughness of steel, as well as the wear resistance. Probably one of the most well known effects of chromium on steel is the tendency to resist staining and corrosion. Steels with 14 percent or more chromium are referred to as stainless steels. A more accurate term would be stain resistant. Stainless tool steels will in fact darken and rust, just not as readily as the non-stainless varieties. Steels with chromium also have higher critical temperatures in heat treatment.

Silicon
Silicon is used as a deoxidizer in the manufacture of steel. It slightly increases the strength of ferrite, and when used in conjunction with other alloys can help increase the toughness and hardness penetration of steel.

Nickel
Nickel increases the strength of ferrite, therefore increasing the strength of the steel. It is used in low alloy steels to increase toughness and hardenability. Nickel also tends to help reduce distortion and cracking during the quenching phase of heat treatment.

Molybdenum
Molybdenum increases the hardness penetration of steel, slows the critical quenching speed, and increases high temperature tensile strength.

Vanadium
Vanadium helps control grain growth during heat treatment. By inhibiting grain growth it helps increase the toughness and strength of the steel.

Tungsten
Used in small amounts, tungsten combines with the free carbides in steel during heat treatment, to produce high wear resistance with little or no loss of toughness. High amounts combined with chromium gives steel a property known as red hardness. This means that the steel will not lose its working hardness at high temperatures. An example of this would be tools designed to cut hard materials at high speeds, where the friction between the tool and the material would generate high temperatures.

Copper
The addition of copper in amounts of 0.2 to 0.5 percent primarily improves steels resistance to atmospheric corrosion. It should be noted that with respect to knife steels, copper has a detrimental effect to surface quality and to hot-working behavior due to migration into the grain boundaries of the steel.

Niobium
In low carbon alloy steels Niobium lowers the transition temperature and aids in a fine grain structure. Niobium retards tempering and can decrease the hardenability of steel because it forms very stable carbides. This can mean a reduction in the amount of carbon desolved into the austenite during heat treating.

Boron
Boron can significantly increase the hardenability of steel without loss of ductility. Its effectiveness is most noticeable at lower carbon levels. The addition of boron is usually in very small amounts ranging from 0.0005 to 0.003 percent.

Titanium
This element when used in conjunction with Boron, increases the effectiveness of the Boron in the hardenability of steel.
>>>-TGMM Family Of The Bow-->
CT CE/FS Chief Instructor
"Death is not the greatest loss in life.  The greatest loss is what dies inside us while we live." - Norman Cousins

Offline brmize

  • Trad Bowhunter
  • **
  • Posts: 168
Re: steel question
« Reply #5 on: November 16, 2008, 08:38:00 PM »
Thank You Guys.

Brian
"After we've lost a natural place, it's gone for eveyone-hikers, campers, boaters, bicyclists, animal watchers, fishers, hunters, and wildlife-a complete and absolutely democratic tragedy of emptiness."  Richard Nelson

Offline Lin Rhea

  • Trad Bowhunter
  • **
  • Posts: 4541
Re: steel question
« Reply #6 on: November 16, 2008, 08:55:00 PM »
Jeremy explained it better than I could.   :)  
Very good information.            Lin
"We dont rent pigs." Augustus McCrae
ABS Master Bladesmith
TGMM Family of the Bow
Dwyer Dauntless longbow 50 @ 28
Ben Pearson recurve 50 @ 28
Tall Tines Recurve 47@28
McCullough Griffin longbow 43@28

Offline sticshooter

  • Trad Bowhunter
  • **
  • Posts: 4210
Re: steel question
« Reply #7 on: November 16, 2008, 10:06:00 PM »
but will it make a good knife ?  :help:
The Church of God is an anvil that has worn out many hammers.

"Walk softly..and carry a sharp   Stic."
TGMM

Offline Jeremy

  • Trad Bowhunter
  • **
  • Posts: 3242
Re: steel question
« Reply #8 on: November 17, 2008, 08:18:00 AM »
I didn't explain anything - just stole something from Terry  :)

Frank, 6195 is the high carbon version of the chrome vanadium steel (I think).  It's commonly used to make roller and ball bearings.  The medium carbon version (6150) is used to make springs.

It's not technically a stainless steel (not high enough chromium content) but I'm not sure about the heat treatment on it.
>>>-TGMM Family Of The Bow-->
CT CE/FS Chief Instructor
"Death is not the greatest loss in life.  The greatest loss is what dies inside us while we live." - Norman Cousins

Users currently browsing this topic:

0 Members and 1 Guest are viewing this topic.
 

Contact Us | Trad Gang.com © | User Agreement

Copyright 2003 thru 2024 ~ Trad Gang.com ©